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Abstract. The triangle and the Penrose tiling are dual quasiperiodic projections from the root
lattice A4. The dual-window theory is developed and applied to pentagonal Delone clusters in the
triangle tiling. The filling, covering, fundamental domain and linkage properties of Delone clusters
are analysed.

1. Introduction

In 1987 Conway, as quoted by Grünbaum and Shepard [2, p 562], gave a theorem on the
Penrose tiling: every Penrose triangle tiling is covered by congruent decagonal patches, called
cartwheels. This theorem led Gummelt [4] to the interpretation of Penrose tilings as coverings
of congruent decagons. Jeong and Steinhardt [12] developed the decagon covering for the
description of atomic positions in decagonal quasicrystals and related it to the notion of a unit
cell.

Why are coverings of interest for the atomic structure of quasicrystals? Suppose that a
tiling in position space can be covered by a few clusters with linkage rules. In the spirit of
Conway’s theorem, it would follow that the tiles in the tiling are correlated in patches formed
by these clusters. In other words, there is much more local rigidity in the tiling than what one
would expect from the matching of next-neighbour tiles. Consequently, the atomic positions
in the tiling model must be correlated over the full range of these clusters. From the coverings
one would therefore hope to gain new and simpler views on the structure and physics of
quasicrystals.

With this motivation, it seems reasonable to explore rigorous results on clusters and
coverings from tiling theory. To this end we start from independent notions for clusters,
coverings, linkages and fundamental domains and then study their relations. The experience
with dual projected quasiperiodic tilings (see [6] for general properties) suggests the technique
of windows. This technique is applied to covering problems in [8]. Voronoi and Delone clusters
are taken as parallel projections of Voronoi and Delone cells. The Penrose and triangle tilings
are dual projections from the root lattice � = A4. The decagons of Gummelt [4] in the
Penrose tiling are Voronoi clusters [8] (see also [9]). The triangle tiling has been applied to the
structure and physics of decagonal quasicrystals, for example, to the local electronic structure
in AlCuCo [7]. Pentagonal Delone clusters in the triangle tiling are introduced in [8, section 5
and appendices A, B]. They are studied here by new methods, in much more detail, and with
new results. The cell geometry and holes of the lattice A4 and the triangle tiling (T ∗, A4) are
briefly described in section 2. In section 3 we give a full algebraic analysis of the windows
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7886 P Kramer

for Delone clusters. The new constructive definition in proposition 1 for the filling by tiles
of a Delone cluster and its window is independent of the cluster position in the tiling. When
related to the tiling it yields all occurrences of the filled Delone cluster viewed from any of its
vertices. A corresponding total window reflects these views, the window given in [8] describes
only a particular one. General criteria for the covering by Delone clusters of vertices and tiles
in the tiling are given in section 4. From the total windows it is shown that any vertex and
any tile in the triangle tiling is covered by at least one Delone cluster. The covering fraction
is computed explicitly. In section 5 we summarize the relation between Delone clusters and
a fundamental domain for the tiling found in [8]. Section 6 deals with the linkage of Delone
clusters. All possible linkages of Delone clusters by a vertex and their relative frequencies are
constructed from their windows and characterized algebraically.

2. The triangle tiling (T ∗, A4)

We refer to [3] for the geometry of lattices and to [1] for a detailed description of the root lattice
A4, its geometry and its projection. In terms of five orthonormal vectors 〈e1, . . . , e5〉 ⊂ E5

we form the five vectors

aj := ej − 1
5

5∑

1

el j = 1, . . . , 5
5∑

1

ai = 0 (1)

with one linear relation to express all relevant positions in the root latticeA4 ⊂ E4. The lattice
points q ∈ A4 are then given by those integral linear combinations of the vectors (1) whose sum
of coefficients are equal to 0 mod 5. Reasons for the use of the vectors equation (1) rather than
a lattice basis are given in and after definition 1. In the root lattice we construct the Voronoi
cells V (q) centred at all lattice points q and the set of dual Delone cells Dh centred at all hole
positions h (cf [3, p 33]), which form the vertices of V (q). The Voronoi cell V (q) is bounded
by hyperplanes at an equal distance between pairs of neighbouring lattice points. Any face or
boundary X of dimension l, 0 � l � 4, from V (q), termed an l-boundary in the terminology
of Sommerville [11, p 96], is uniquely determined by an intersection of hyperplanes between
a minimal set s(X) := 〈q ′〉(X) of lattice points. Its dual (4 − l)-boundary X∗ is defined [6] as
the convex hull X∗ := 〈conv(q ′), q ′ ∈ s(X)〉. It is the face or boundary of a dual Delone cell
[3, p 35]. The holohedry or full point group of A4 is S5 ×Z2 generated by the permutations of
S5 and by the inversion i = (11)(22)(33)(44)(55). We express all actions of the point group
as signed permutations of the vectors 〈a1, . . . , a5〉.

To characterize the (shallow and deep) holes in the lattice A4 (cf [3, pp 108–10]) we
introduce, seen from the points q of the lattice, the hole positions

h =
5∑

1

njaj (2)

and the modulo function

r(h) =
5∑

1

nj mod 5. (3)

Definition 1. The shallow holes h of the root lattice A4 are denoted by the letter h = a. They
are the point classes (h, r(h)) = (a, 1), (a, 4). The deep holes are denoted by the letter h = b.
They are the point classes (h, r(h)) = (b, 3), (b, 2). The inversion i is a rotation by π both
in E‖, E⊥. Under this operation, the pairs of shallow and deep hole classes interchange their
role. The class q with r(q) = 0 describes the points of the lattice A4.



Delone clusters, covering and linkage 7887

Any hole position h is a vertex or 0-boundary of a Voronoi cell and so can be written as
the intersection of bounding hyperplanes between a minimal set of lattice points s(h) := 〈q ′〉.
The Delone cell dual to h is then Dh = 〈conv(q ′), q ′ ∈ s(h)〉(h). Both the simple action of
the point group and the unified description of hole and lattice points are our reasons for using
the vectors 〈a1, . . . , a5〉 in equation (1) and not a lattice basis. The notation aj for vectors
with an index should be strictly distinguished from the notation for shallow and deep holes
h = a, b. It can be shown that the point subgroup S5 when acting with respect to any hole
point belongs to the space group and hence to the symmetry group of A4. We shall use this
property in section 3.

The point subgroup compatible with the quasicrystal projection to the 2D parallel and
perpendicular planes E‖, E⊥, E‖ + E⊥ = E4 is the Coxeter group I2(5) < S5 in the notation
of Humphreys [5, p 32], generated by the reflections R1 = (25)(34), R2 = (12)(35), enlarged
by the inversion i. In the projection scheme for quasicrystals with fivefold point symmetry, the
irrational plane E‖ serves as position space and the irrational plane E⊥ as the window space.
The vectors aj projected to these two planes form the two 5-stars shown in figure 1.

Figure 1. The vectors 〈a1, . . . , a5〉 form two 5-stars in E‖ (left) and E⊥ (right). They are used to
describe the hole and lattice point positions of A4 and their projections to these two spaces.

Definition 2. The tiling (T ∗, A4) has the vertex set

{q‖| q⊥ ∈ V⊥}. (4)

The window V⊥ for the vertex set is the perpendicular projection of a fixed Voronoi cell. The
tiles are dual 2-boundaries X∗

1‖, X
∗
2‖ of Delone cells projected to E‖. The windows for the

tiles are 2-boundariesX1⊥, X2⊥ of the Voronoi cells projected toE⊥. The tiles are two golden
triangles, the windows are two Penrose rhombus tiles.

3. Delone clusters in the triangle tiling

A Delone cell Dh in the lattice A4 is a 4D polytope with its centre at a hole position h and
equipped with a hierarchy of dual boundaries. A Delone cluster is defined in [8] as a parallel
projection Dh

‖ of a Delone cell from the lattice A4. It will be a polygon in E‖. All dual
boundaries ofDh if projected toE‖ would overlap in a superposition with full symmetry under
I2(5). Even the projection of all dual 2-boundaries would form such a superposition and would
not be part of the tiling.

Definition 3. A filling of (the polygon)Dh
‖ is a union of projected dual 2-boundariesX∗

j which
covers Dh

‖ exactly and forms a patch of the tiling without gaps and overlaps.
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Dual tiling theory, as outlined in detail in [10], provides the construction given in
proposition 1 for such a filling. It will be shown that this filling is unique, breaks the local
symmetry inside the Delone cluster, and appears in the tiling with equal frequency in all
orientations under I2(5).

Proposition 1 (Windows and fillings of Delone clusters). Denote inE⊥ byX1⊥(h),X2⊥(h)
tiles in a standard orientation with a hole vertex of class h attached to a fixed hole position h⊥.
Determine by the application of point group elements gl, gk ∈ I2(5) with respect to the point
h⊥, compare section 2, a maximal intersection of tiles glX1⊥(h), gkX2⊥(h) which share at
least one interior point x⊥ �= h⊥. Construct in E‖ by dualization and application of the same
point group elements gl, gk the union of the dual tiles glX∗

1‖, gkX
∗
2‖. This intersection and this

union are the window w(h) and the filling Dh
‖ for a Delone cluster of fixed orientation,

w(h) = ∩l,k(glX1⊥(h))(gkX2⊥(h))

Dh
‖ = ∪l,k(glX

∗
1‖(h))(gkX

∗
2‖(h)).

(5)

We shall work out these expressions in the following subsections.

3.1. Standard positions of dual 2-boundaries

In E⊥, X1⊥, X∗
1⊥ are a thick rhombus and an obtuse triangle, X2⊥, X∗

2⊥ are a thin rhombus
and an acute triangle. We refer the standard positions to the centre q = 0 of a Voronoi cell.
Each one of the boundaries X1, X2 with fixed orientation appears in three copies in a Voronoi
window (cf figure 2). In the tiling (T ∗, A4) ⊂ E‖, these three copies are the windows for
the triangle tiles X∗

1, X
∗
2 seen from their three vertices, respectively. We drop the indices for

parallel and perpendicular projections. This is allowed by the unique lifting property both
from E‖, E⊥ to E4. We express the boundaries in coordinates with respect to the centre q of
a Voronoi cell and indicate this by writing Xi(q),X

∗
i (q) (cf figure 2):

X1(q) := P(+ 0 − − 0) := (a1 − a3 − a4)/2 + (λ2a2 + λ5a5)/2

X∗
1(q) := 〈0, a1 − a4, a1 − a3〉

a4 − a1 + X1(q) = a4 − a1 + P(+ 0 − − 0) = P(− 0 − + 0)

a4 − a1 + X∗
1(q) = 〈a4 − a1, 0, a4 − a3〉

a3 − a1 + X1(q) = a3 − a1 + P(+ 0 − − 0) = P(− 0 + − 0)

a3 − a1 + X∗
1(q) = 〈a3 − a1, a3 − a4, 0〉

X2(q) := P(+ − 0 0 −) := (a1 − a2 − a5)/2 + (λ3a3 + λ4a4)/2

X∗
2(q) := 〈0, a1 − a2, a1 − a5〉

a2 − a1 + X2(q) = a2 − a1 + P(+ − 0 0 −) = P(− + 0 0 −)
a2 − a1 + X∗

2(q) = 〈a2 − a1, 0, a2 − a5〉
a5 − a1 + X2(q) = a5 − a1 + P(+ − 0 0 −) = P(− − 0 0 +)

a5 − a1 + X∗
2(q) = 〈a5 − a1, a5 − a2, 0〉

|λj | � 1.

(6)

The notation is taken from [1], the triangles X∗
j are denoted by their vertex set. All other

2-boundaries are obtained from equation (6) by the action of the Coxeter group I2(5) and of i.
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Figure 2. Positions for rhombus boundaries of fixed orientation in the
decagonal Voronoi window V⊥ with centre q⊥, full square. The two standard
positions X1⊥, X2⊥ have reflection symmetry under (25)(34). The hole vertex
(h, r(h)) = (a, 1) is marked on each rhombus by a full circle. The hole vertices
h = b are marked by open circles, the full class identification is given in figure 9.

Figure 3. The window w(a, 1) equation (8) for the Delone cluster D(a,1)
‖ is the shaded

intersection cone of three rotated rhombus tiles at a hole position (h, r(h)) = (a, 1), full
circle. The filling is given in figure 4.

3.2. Delone clusters Da
‖ and their windows

Each tileX1, X2 has a single vertex of hole type h = a. For the Delone cluster it is convenient
to rewrite the boundaries in coordinates with respect to this unique hole position. The vector
for X1, X2 in standard position from q = 0 to this hole position is always t = a1. Referred to
the hole (a, 1) we find for Xi(a, 1),X∗

i (a, 1)

X1(a, 1) = −a1 + P(+ 0 − − 0)

X∗
1(a, 1) = −a1 + 〈0, a1 − a4, a1 − a3〉

X2(a, 1) = −a1 + P(+ − 0 0 −)
X∗

2(a, 1) = −a1 + 〈0, a1 − a2, a1 − a5〉.

(7)

3.2.1. The window for fixed orientation of hole class (a, 1). Upon choosing a particular
orientation we arrive at expressions for the intersections and unions of tiles entering equation (5)
as in table 1.

The combination of these tiles yields expressions for the window w(a, 1) = w(D
(a,1)
‖ )

and the filling D(a,1)
‖ according to equation (5) in the form

w(a, 1) = (−a1 + P(+ 0 − − 0)) ∩ (−a2 + P(− + − 0 0)) ∩ (−a5 + P(− 0 0 − +))

D
(a,1)
‖ = (−a1 + 〈0, a1 − a4, a1 − a3〉) ∪ (−a2 + 〈0, a2 − a3, a2 − a1〉)

∪(−a5 + 〈0, a5 − a1, a5 − a4〉).
(8)

It is understood that all expressions for windows refer to E⊥ and all expressions for fillings
refer toE‖. The windoww(a, 1) is a cone at the hole (a, 1)with an opening angle 2π/5, taken
from a decagon scaled by τ−2 with respect to V⊥. It is shown in figure 3.

We now wish to characterize the filling D
(a,1)
‖ within the tiling (T ∗, A4). In terms of

windows we must relate the windoww(a, 1) shown in figure 3 to the window V⊥ for the tiling.
In the present case it is possible to represent the windoww(a, 1) in particular as an intersection
of rhombus tiles which belong to a single Voronoi window V⊥. This is shown in figure 4(a),
along with the filling D(a,1)

‖ in (b).
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Table 1.

Tiles X1(a, 1),X∗
1(a, 1)

t a1

g e

gX1(a, 1) −a1 + P(+ 0 − − 0)
gX∗

1(a, 1) −a1 + 〈0, a1 − a4, a1 − a3〉
Tiles X2(a, 1),X∗

2(a, 1)

t a1 a1

g (12345) (15432)
gX2(a, 1) −a2 + P(− + − 0 0) −a5 + P(− 0 0 − +)
gX∗

2(a, 1) −a2 + 〈0, a2 − a3, a2 − a1〉 −a5 + 〈0, a5 − a1, a5 − a4〉

Figure 4. (a) Window cone w(a, 1): shaded, as an intersection of rotated rhombus tiles X1, X2 at
a hole position (h, r(h)) = (a, 1); full circle, in the decagon V⊥ centred at a lattice point q⊥, full
square. (b) Filled pentagonal Delone clusterD(a,1)

‖ as union of the dual rotated trianglesX∗
1‖, X

∗
2‖.

3.2.2. All windows of hole class (a, 1) for fixed orientation. The contributing 2-boundaries
Xl which intersect in the windoww(a) equation (7) refer to a variety of different Voronoi cells
V (q). To obtain the set of all lattice points q which participate in the union of tiles recall that
the dual boundaries X∗

l are convex hulls for subsets of lattice points from this set. It follows
that we find all the centres q of these Voronoi cells by collecting from table 1 all the different
vertices of the dual tiles gX∗

1, gX
∗
2 . By inspection one finds, seen from the hole position (a, 1),

the Voronoi centres

q − a = −a1,−a2,−a3,−a4,−a5. (9)

The inverses of these vectors are, by comparison with equations (2) and (3), five particular
hole positions of type (h, r(h)) = (a, 1) belonging to V (q).

Now we look for the general occurrence of the filling D(a,1)
‖ with fixed orientation in the

tiling. When checking the tiling vertex by vertex, one can identify a filling whenever one
arrives at one of its vertices. Similarly, as we found for a single triangle tile three different
rhombus windows within V⊥ (see figure 2), corresponding to its three vertices, we expect to
find for the fillingD(a,1)

‖ (see figure 4) with fixed orientation five windows corresponding to the
number of vertices. The five windows can be constructed fromw(a) by rewriting this window
as w(q) = w(a, 1)− (q − a) seen from its set of five Voronoi centres q given in equation (9).
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We obtain

w(a, 1) + a1 = (P (+ 0 − − 0)) ∩ (a1 − a2 + P(− + − 0 0)) ∩ (a1 − a5 + P(− 0 0 − +))

= (P (+ 0 − − 0)) ∩ (P (+ − − 0 0)) ∩ (P (+ 0 0 − −))
w(a, 1) + a2 = (a2 − a1 + P(+ 0 − − 0)) ∩ (P (− + − 0 0)) ∩ (a2 − a5 + P(− 0 0 − +))

w(a, 1) + a3 = (a3 − a1 + P(+ 0 − − 0)) ∩ (a3 − a2 + P(− + − 0 0))

∩(a3 − a5 + P(− 0 0 − +))

= (P (− 0 + − 0) ∩ (P (− − + 0 0) ∩ (a3 − a5 + P(− 0 0 − +))

w(a, 1) + a4 = (a4 − a1 + P(+ 0 − − 0)) ∩ (a4 − a2 + P(− + − 0 0))

∩(a4 − a5 + P(− 0 0 − +))

= (P (− 0 − + 0) ∩ (a4 − a2 + P(− + − 0 0)) ∩ P(− 0 0 + −)
w(a, 1) + a5 = (a5 − a1 + P(+ 0 − − 0)) ∩ (a5 − a2 + P(− + − 0 0)) ∩ (P (− 0 0 − +)).

(10)

In these expressions we have in a second step by application of equation (6) and its rotated
versions eliminated all the translations which provide another boundary of the chosen Voronoi
cell. In particular, the window w(a, 1) + a1 is an intersection of unshifted boundaries. This
window was given in figure 4 (left) and corresponds to the filling of D(a,1)

‖ in figure 4 (right)
seen from the top vertex. In all other cases the window in the Voronoi domain is an intersection
cone that involves one or two translated boundaries. We show the position of all five window
cones from equation (10) in figure 5(a). There is a one-to-one correspondence between the
hole position of the window cone and a vertex in the filling.

Figure 5. (a) Five conesw(a, 1) at hole positions (h, r(h)) = (a, 1) in V⊥ are the windows for the
filling D(a,1)

‖ seen from its five vertices. (b) Fivefold rotations and superposition of the cones in
(a) generate the total window for all holes of class (a, 1). The total window consists of five scaled
decagons τ−2V⊥ centred at the five hole positions of class (h, r(h)) = (a, 1).

3.2.3. Total window for all orientations and hole class (a, 1). Each cone in equation (10)
is the window of a filled Delone cluster D(a,1)

‖ of the same fixed orientation but seen from
a different vertex. Any new orientation obtained by fivefold rotation yields in the Voronoi
window another set of five window cones. The reflection (25)(34) transforms both the initial
windows and the filling in figure 5 into itself. The total window under all these operations
can be described as follows: it consists of five decagons centred at the five hole positions and
scaled linearly in comparison to the Voronoi window as τ−2V⊥. This total window is shown
in figure 5(b).
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3.2.4. Windows for the hole class (a, 4). Finally, we apply the inversion i. The five hole
positions (h, r(h)) = (a, 1) go into five hole positions of the class (h, r(h)) = (a, 4). There
are five new decagonal windows and five new orientations of the filled Delone cluster Da

‖ .
These windows and fillings are not shown in the figures.

We summarize the results on the Delone clusters Da:

Proposition 2. The Delone clusters D(a,j)

‖ have a unique filling. The filling has a mirror
symmetry and appears in 10 orientations, five for class (h, r(h)) = (a, 1) and five for class
(h, r(h)) = (a, 4). The total windows for all orientations are scaled decagons τ−2V⊥, centred
at all hole positions h = a of and intersected with V⊥.

3.3. Delone clusters Db
‖ and their windows

We start again from the window side. The tiles X1, X2 each have three vertex holes of type
b. Therefore, we find from the standard positions equation (6) a variety of vectors t . Again
we denote by Xl(b, j) the coding tiles in coordinates seen from the fixed hole position and by
X∗
l (b, j) the duals. In section 2 we mentioned that the point group elements g ∈ I2(5) applied

with respect to hole positions are symmetries of the lattice. In table 2 we apply the inversion i,
which does not belong to I2(5), with respect to hole positions. Instead of introducing a second
set of standard 2-boundaries we have extended proposition 1. The interpretation is that i acts
geometrically on the standard rhombus tiles and their duals but at the same time according to
definition 1 interchanges the subclasses of holes (a1, a4) and (b3, b2) at the vertices of the
rhombus tiles compared with their labels given in figure 9. In the intersection figure 6 this
combined action ensures that all the intersecting rhombus tiles share the hole vertex of class
(b, 3).

3.3.1. The window for fixed orientation and hole class (b, 3). Upon choosing a fixed
orientation we find the expressions as in table 2.

Table 2.

Tiles X1(b, 3),X∗
1(b, 3)

t (−a3 − a4) (a1 + a2)

g (12345) i(14253)
gX(b, 3) a4 + a5 + P(0 + 0 − −) a4 + a5 + P(+ + 0 − 0)
gX∗(b, 3) a4 + a5 + 〈0, a2 − a4, a2 − a5〉 a4 + a5 + 〈0,−a4 + a2,−a4 + a1〉
t (a1 + a5) (a1 + a5)

g i(15432) i(13524)
gX(b, 3) a4 + a5 + P(0 + + 0 −) a2 + a3 + P(+ 0 − 0 +)
gX∗(b, 3) a4 + a5 + 〈0,−a5 + a2,−a5 + a3〉 a2 + a3 + 〈0,−a3 + a1,−a3 + a5〉
Tiles X2(b, 3),X∗

2(b, 3)

t (−a2 − a5) (−a2 − a5)

g (13524) e

gX(b, 3) a2 + a4 + P(0 − + − 0) a2 + a5 + P(+ − 0 0 −)
gX∗(b, 3) a2 + a4 + 〈0, a3 − a4, a3 − a2〉 a2 + a5 + 〈0, a1 − a2, a1 − a5〉
t (a1 + a4)

g i(14253)
gX(b, 3) a2 + a4 + P(0 0 + − +)
gX∗(b, 3) a2 + a4 + 〈0,−a4 + a5,−a4 + a3〉
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Figure 6. The window w(b, 3) is the shaded intersection cone of seven rhombus tiles
attached to a hole (h, r(h)) = (b, 3), open circle. The seven tiles are marked in addition by
their holes h = a, full circles. The filling D(b,3)

‖ is shown in figure 7.

Figure 7. (a) Window cone w(b, 3), shaded, equation (11), as the intersection of rotated and
translated rhombus tiles X1⊥, X2⊥ at a hole position (b, 3), open circle, in the decagon V⊥.
(b) Filled pentagonal Delone cluster D(b,3)

‖ as the union of dual rotated and translated triangles
X∗

1‖, X
∗
2‖.

The window w(b, 3) is obtained as the intersection of the seven rhombus tiles in table 2.
It is a cone of opening angle 2π/10 and part of a scaled decagon τ−2V⊥ (cf figure 6).

Again we ask about the occurrence of the filling D
(b,3)
‖ in the tiling and look into the

relation of its window in figure 6 with the Voronoi window. It is not possible to represent the
windoww(b, 3) as the intersection of rhombus boundaries of a single Voronoi cell. Seen from
the point of view of the tiling, the reason is that inD(b,3)

‖ figure 7 there is no vertex q shared by
all the tilesX∗

j of the filling, in contrast toDa
‖ . To represent the windoww(b, 3) within V⊥ we

must admit rotated and translated rhombus tiles in a single decagon. One such representation
is given in equation (11) and shown in figure 7.

The window and filling for q − b = −a2 − a5 is given by

w(b, 3)− a2 − a5 = (−a2 + a4 + P(+ + 0 − 0)) ∩ (−a2 + a4 + P(+ + 0 − 0))

∩(−a2 + a4 + P(0 + + 0 −)) ∩ (a3 − a5 + P(+ 0 − 0 +))

∩(a4 − a5 + P(0 − + − 0)) ∩ P(+ − 0 0 −)
∩(a4 − a5 + P(+ − 0 0 −))

D
(b,3)
‖ = (−a2 + a4 + 〈0, a2 − a4, a2 − a5〉) ∪ (−a2 + a4 + 〈0,−a4 + a2,−a4 + a1〉)

∪(−a2 + a4 + 〈0,−a5 + a2,−a5 + a3〉) ∪ (a3 − a5 + 〈0,−a3 + a1,−a3 + a5〉)
∪(a4 − a5 + 〈0, a3 − a4, a3 − a2〉) ∪ 〈0, a1 − a2, a1 − a5〉
∪(a4 − a5 + 〈0,−a4 + a5,−a4 + a3〉).

(11)
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Figure 8. (a) Seven cones w(b, 3) at hole positions (b, 3) in V⊥ are the windows for the filling
D
(b,3)
‖ seen from its seven vertices. (b) Fivefold rotations, the reflection (25)(34) in the vertical

line, and superposition of the cones in (a) generate the total window for all holes of class (b, 3),
open circles. The total window consists of ten scaled decagons τ−2V⊥, centred at ten hole positions
(b, 3) and intersected with V⊥.

3.3.2. All windows for fixed orientation of hole class (b, 3). We evaluate, seen from the hole
vertex, all the Voronoi centres which appear in table 2 as vertices of anyX∗

1(b),X
∗
2(b) to obtain

q − b = a1 + a2, a1 + a5, a2 + a3, a2 + a4, a2 + a5, a3 + a4. (12)

The seven positions b − q are holes of class (h, r(h)) = (b, 3) but do not exhaust the
representatives of this class within one Voronoi cell. By the same reasoning as before, the
seven vectors b − q produce seven window cones w(b) + b − q on V⊥. In the tiling they
correspond to the seven vertices of the filling Db

‖ (see figure 7). These windows are shown in
figure 8(a). Again there is a one-to-one relation between the hole position of a window cone
and a vertex of the filling. The filling has two internal vertices. They correspond to window
cones at hole positions on vertices of the decagon.

3.3.3. Total window for all orientations of hole class (b, 3). Applying all fivefold rotations
to the seven windows one obtains altogether 7 × 5 = 35 window cones, located now at all 10
holes of type (b, 3) of the Voronoi cell. Next, include the reflection (25)(34) which still keeps
the same class of holes. Both the initial seven windows w(b, 3) and the initial filling D(b,3)

‖ go
into different reflected forms. Under fivefold rotation the reflected window cones fit precisely
in between the first 35 window cones and fill up the scaled decagons. The total window can
now be described as follows: first, consider scaled decagons τ−2V⊥ at all 10 representative
hole positions. Drop from these decagons all the sectors which fall outside of V⊥. The total
number of cones is 5(10 + 4) = 70. This total window is shown in figure 8. By comparison
with the previous section we observe that the window cones w(b, 3) at all hole positions on
the edges of the decagon V⊥ correspond to internal vertices of the Delone filling D(b,3)

‖ .

3.3.4. Windows for hole class (b, 2). Next apply the inversion i. It transforms the 10 holes
from class (b, 3) to class (b, 2) and, together with the reflection (25)(34), gives a new total
window. To these windows there correspond 10 more rotated fillings D(b,2)

‖ . They are not
shown in the figures.

We summarize the results on the Delone clusters Db:

Proposition 3. The Delone clusters Db
‖ have a unique filling. It has no point symmetry with

respect to its centre and appears in 20 orientations, 10 for class (b, 3) and 10 for class (b, 2).
The windows for all orientations are scaled decagons τ−2V⊥, centred at all hole positions
h = b of and intersected with V⊥.
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4. Covering by Delone clusters

Given a vertex of the tiling (T ∗, A4), does it always belong to at least one Delone cluster? Are
all the tiles of the tiling covered by Delone clusters, and what is the covering fraction? We
analyse these points in this section.

4.1. Covering of vertices and tiles

We analyse the covering of a vertex q‖ ⊂ (T ∗, A4) from the side of the window. In terms
of the windows this vertex is covered if and only if q⊥ belongs to the window of at least one
Delone cluster.

Proposition 4 (Window criterion for covering of vertices). Any vertex q‖ in the tiling
(T ∗, A4) is covered by a Delone cluster Dh

‖ if and only if q⊥ ∈ V⊥ is covered by a window
w(h).

To check what fraction of vertices in the tiling is covered by some Delone cluster one
must superpose the total windows for all four hole classes. Note that these windows include
the occurrence of fillings seen from any one of their vertices. It is easy to see from figures 5,
8 and their versions rotated by 2π/10 that the four total windows together cover all the points
of the decagon V⊥. As a result we find

Proposition 5 (Delone covering of all vertices). Any vertex of the tiling (T ∗, A4) is covered
by at least one Delone cluster.

Consider next the Delone covering for complete tiles of the tiling. A tile X∗
‖ at the vertex

q‖ occurs in the tiling whenever q⊥ ∈ X⊥ ⊂ V⊥. If moreover q⊥ ⊂ w(h) then it follows that
X∗

‖ ⊂ Dh
‖ .

Proposition 6 (Window criterion for covering of tiles). A tile X∗
‖ in the tiling is completely

covered by at least one Delone cluster if and only if its windowX⊥ ∈ V⊥ is completely covered
by all the windows w(h) for the local hole vertices h⊥ ∈ X⊥.

As can be seen in figure 9, the criterion proposition 6 is fulfilled from the window side for
all the tiles of the triangle tiling. There follows

Figure 9. The two rhombus tile windows X1⊥, X2⊥ are completely covered by cones from small
decagons (heavy edge lines) centred at the hole positions marked (a, j), (b, l) (full and open circles)
on their four vertices.
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Proposition 7 (Delone covering of all tiles). Any tile of the tiling (T ∗, A4) is completely
covered by at least one Delone cluster.

A patch of the triangle tiling along with the Delone clusters is given in figure 5 of [8].

4.2. Covering fraction

All vertices and all tiles of the tiling were found to be covered by Delone clusters. To quantify
the efficiency of this covering we use, in analogy with the packing fraction, the following
definition.

Definition 4. Consider a large patch of the tiling and its covering Delone clusters. The
covering fraction fcov we define as the limit for infinite patch size of the ratio between the
area Fcov of all Delone clusters on the patch and the area F taken by the patch.

A proper tiling would yield a covering fraction fcov = 1. For the covering by Delone
clusters we expect a value larger than 1 due to overlap. Consider a large patch of area F of the
tiling built from acute trianglesX∗

1‖ and obtuse trianglesX∗
2‖. Let n(1), n(2) denote the number

of these tiles for fixed orientation in the patch. The windows of the two tiles are the thick and
the thin Penrose rhombus. The relative frequencies of the two tiles in the infinite-tiling limit
are proportional to the area taken by their windows. We put arrows in front of asymptotic
values valid for large but finite patches and have

n(1)/n(2) → τ. (13)

The area F of the patch can be written in terms of the tiles as

F := 10(n(1)|X∗
1‖| + n(2)|X∗

2‖|)
→ 10(τ 2 + 1)n(2)|X∗

2‖|. (14)

The factor of 10 accounts for the possible orientations. In the second line we used equation (13)
and |X∗

1‖|/|X∗
2‖| = τ . Letn(q) denote the number of vertices in the patch. To relate this number

to the number of tiles we attach to each vertex of a tile the fraction, internal angle/(2π) at the
vertex. Up to the boundaries of the patch these fractions add up to the number n(q) of vertices,
and so they must yield the correct asymptotics. Inside any triangle tile the internal angles sum
to π and so contribute the fraction 1

2 to the number of vertices. Therefore, we can write with
equation (13)

n(q) → (
10
2

)
(n(1) + n(2)) → (

10
2

)
τ 2n(2). (15)

With these results we obtain from equations (14) and (15)

F → 2τ−2(τ 2 + 1)n(q)|X∗
2‖| (16)

valid for n(q) � 1.
We turn to the Delone clusters and wish to relate the area covered by them to the number

n(q) of vertices in the patch. The area of the Delone clusters is, respectively,

|Da| = |X∗
1‖| + 2|X∗

2‖| = (τ + 2)|X∗
2‖|

|Db| = 4|X∗
1‖| + 3|X∗

2‖| = (4τ + 3)|X∗
2‖|.

(17)

Letn(a, 1), n(a, 4), n(b, 3), n(b, 2) denote the number of oriented Delone clusters in the patch.
These numbers take asymptotic values given by the ratio of the windows of the Delone clusters
to |V⊥|, multiplied by the number of vertices,

5n(a, 1), 5n(a, 4) → τ−4n(q), 10n(b, 3), 10n(b, 2) → τ−4n(q). (18)
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The numbers 5 and 10 count the possible orientations of the two Delone clusters. Then the
area covered by all Delone clusters on the patch is from equations (17) and (18)

Fcov := 5(n(a, 1) + n(a2))|Da| + 10(n(b, 3) + n(b, 2))|Db|
→ 2τ−4n(q)(|Da| + |Db|) = 10τ−2n(q)|X∗

2‖| (19)

again valid for n(q) � 1. From equations (19) and (16) we can now compute the covering
fraction according to definition 4 as the limit

fcov = lim
n(q)→∞

(Fcov/F ) = (10τ−2)/(2τ−2(τ 2 + 1)) = 5/(τ + 2) = 1.38. (20)

So on average there is an excess of 38% in the covering of the triangle tiling by Delone clusters.

5. Fundamental domain property

We inquire whether the Delone clusters can be related to a fundamental domain. In [8] the
notion of a fundamental domain F(T ,�) was given for functions compatible with a class of
quasiperiodic tilings, built from a minimal set of prototiles and their translates. The tiling

Figure 10. A sector of opening angle 2π/10 of the decagon window V⊥. Small decagons (heavy
lines) around eight hole positions marked (a, 1), (a, 4), (b, 3), (b, 2) are the windows of eight
Delone clusters, with sectors (thin lines) corresponding to possible orientations. The small decagons
and their sectors intersect in 21 numbered polygons, up to a reflection i(15)(24) in the symmetry
axis of the large sector. Each polygon is the window for a set of Delone clusters linked by a shared
vertex. The patches of linked Delone clusters can be constructed from the small decagon sectors
which participate in the polygonal window. They are shown in figure 11.
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(T , A4) belongs to this class. As prototiles we may choose the two triangles X∗
1‖, X

∗
1‖, each in

10 possible orientations. A possible fundamental domain F(T , A4) is then given by all points
from these 20 prototiles.

As shown in figure 5 of [8], it is possible to choose filled oriented Delone clusters for four
different hole classes which encompass all of these 20 prototiles.

Proposition 8. Four filled Delone clusters of the four hole classes (a, 1), (a, 4), (b, 3), (b, 2)
can be oriented so that they form a fundamental domain F(T ∗, A4) for quasiperiodic functions
compatible with the tiling (T ∗, A4).

6. Linkage of Delone clusters

How are the Delone clusters linked in the covering of the tiling? Consider the linkage of
Delone clusters by a shared vertex q‖ ∈ ∪hD

h
‖ of the tiling. From the window side this

linkage is characterized by the condition q⊥ ∈ ∩hw(h) ⊂ V⊥. By constructing all possible
intersections of the windows w(h) ⊂ V⊥ we can find all linkages of Delone clusters by a
vertex. Any window w(h) is a sector of a small decagon around the hole position h⊥. Inside
V⊥ ⊂ E⊥ we must find all possible intersections of these small decagons. It suffices to
analyse a large sector of opening angle 2π/10 of V⊥. Such a sector is shown in figure 10.
The small decagon windows around eight hole positions in V⊥ contribute to the large sector.

Figure 11. The Delone clusters form 21 linkages by a vertex shown in the figure. Their windows
are the 21 numbered polygons of figure 10. The linking vertex is marked by a full square, the
centres of the Delone clusters are marked for holes of type a, b by full and open circles. Seven
linkages are invariant under the reflection i(15)(24), 14 more linkages (not shown) result from the
action of this reflection on the remaining ones.
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Figure 11. Continued.

There are 21 intersection polygons which form the windows for linked Delone clusters. The
reflection i(15)(24) in the symmetry axis of the sector interchanges subclasses of holes. The
seven intersection polygons 3, 5, 11, 18 − 21 are invariant under this reflection, the other
14 have images in the sector under this reflection. For each hole that contributes to an
intersection polygon we determine its centre position and the specific sector of its decagon.
The specific sector is obtained from a standard sector of figures 3 or 6 by a point group
element g.



7900 P Kramer

Table 3. Centres of Delone clusters in the linkages j = 1, . . . , 21, and their orientations. Rows 2−9
list the centres and the orientations, expressed by the action of s1 =: (25)(34), g5 =: (12345), i
on the standard positions in figures 4 and 7. Row 10 gives the relative frequency ν(j) and row 11
under vert the central vertex configuration in the enumeration of [1, p 2243].

h 1 2 3 4 5 6 7 8 9 10 11

(a, 1) a1 g4
5 g4

5 — g4
5 g4

5 g4
5 g4

5 g4
5 g4

5 g2
5 g2

5

(a, 4) −a5 — — — — i i g2
5 i — g2

5 i g2
5 i g2

5 i

(b, 3) −a2 − a5 g2
5s1 e g2

5s1 g2
5s1 g2

5s1 g2
5s1 e e e — —

(b, 3) −a2 − a3 — — — — — — — — — g5s1 g5s1

(b, 3) −a4 − a5 — — — — — — — — — — —
(b, 2) a1 + a4 — — g2

5 i g2
5 i g2

5 i — — — — — —
(b, 2) a3 + a4 — — — — — — — s1i s1i s1i g3

5 i

(b, 2) a1 + a2 — — — — — — — — — — —
ν(j) 2τ−7 2τ−7 τ−9 τ−10 2τ−9 τ−8 τ−8 τ−8 τ−7 τ−6 2τ−7

vert 1 2 1 1 1 1 2 2 2 3 3

h 12 13 14 15 16 17 18 19 20 21

(a, 1) a1 e e e e e e e e — —
(a, 4) −a5 g2

5 i g2
5 i g4

5 i g4
5 i — — g4

5 i g4
5 i — —

(b, 3) −a2 − a5 — — — — — — — — — —
(b, 3) −a2 − a3 g5 g5 g5 g3

5s1 g3
5s1 g3

5s1 g5 g3
5s1 g3

5 g3
5

(b, 3) −a4 − a5 g4
5s1 g4

5s1 g2
5 g2

5 g2
5 g2

5 g2
5 g2

5 g2
5 g2

5s1

(b, 2) a1 + a4 — — — — — — — — — —
(b, 2) a3 + a4 s1i g3

5 i g3
5s1i g5i g5s1i g5s1i g3

5s1i g5i g5s1i g5s1i

(b, 2) a1 + a2 — — — — — g2
5s1i g2

5s1i g2
5s1i g2

5s1i g2
5 i

ν(j) τ−7 τ−8 τ−9 τ−10 τ−9 τ−10 τ−10 τ−11(τ + 2) τ−9 τ−6

vert 4 4 5 6 7 7 5 6 8 9

We pass to the tiling in E‖, mark the centre position of the hole, and apply the group
element g to the standard position in figures 4 or 7 of the filled Delone cluster. As a result
we find the 21 sets of Delone clusters linked by a vertex and shown in figure 11. The central
part of any linkage is a vertex configuration of the tiling (T ∗, A4) as classified in [1]. Observe
that for any vertex configuration the covering enforces the continuation into a few linkages
of Delone clusters. The reflection i(15)(24), applied now in E‖, leaves seven linked clusters
invariant and produces 14 new images (not shown) with interchanged subclasses of holes.
Finally, these linkages can appear in all orientations under I2(5). For each linkage one can
compute the area of the window or intersection polygon and divide it by the area of the large
sector. The resulting number ν(j) yields the relative frequency of occurrence for the linkage
j in the tiling. All the relevant quantities are listed in table 3.

The information on the linkages is exhaustive. Other aspects, such as for example the
linkage in pairs of Delone clusters, could easily be derived from it.
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